95 resultados para Apoptosis - physiology

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natriuretic peptide system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. A natriuretic peptide system is present in each vertebrate class but there are varying degrees of complexity in the system. In agnathans and chondrichthyians, only one natriuretic peptide has been identified, while new data has revealed that multiple types of natriuretic peptides are present in bony fish. However, it seems in tetrapods that there has been a reduction in the number of natriuretic peptide genes, such that only three natriuretic peptides are present in mammals. The peptides act via a family of guanylyl cyclase receptors to generate the second messenger cGMP, which  mediates a range of physiological effects at key targets such as the gills, kidney and the cardiovascular system. This review summarises the current knowledge of the natriuretic peptide system in non-mammalian vertebrates and discusses the physiological actions of the peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explains the designed performances of the new CH2 building in Melbourne, Australia. CH2 is an environmentally significant project that involves biomimicry of natural systems to produce indoor conditions that are conducive to user comfort, health and productivity. This paper focuses on lighting and  physiology and examines the solutions chosen for artificial and natural lighting and the likely effects these will have on building occupants. The purpose of the paper is to critically comment on the adopted strategy and, cognisance of  contemporary thinking in lighting design, to judge the effectiveness of this aspect of the project with a view to later verification and post-occupancy review. The  paper concludes that CH2 is an exemplar of lighting innovation that provides valuable lessons to designers of office buildings, particularly in the Melbourne CBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Menkes protein (ATP7A) is defective in the Cu deficiency disorder Menkes disease and is an important contributor to the maintenance of physiological Cu homeostasis. To investigate more fully the role of ATP7A, transgenic mice expressing the human Menkes gene ATP7A from chicken beta-actin composite promoter (CAG) were produced. The transgenic mice expressed ATP7A in lung, heart, liver, kidney, small intestine, and brain but displayed no overt phenotype resulting from expression of the human protein. Immunohistochemical analysis revealed that ATP7A was found primarily in the cardiac muscle, smooth muscle of the lung, distal tubules of the kidney, intestinal enterocytes, and patches of hepatocytes, as well as in the hippocampus, cerebellum, and choroid plexus of the brain. In 60-day- and 300-day-old mice, Cu concentrations were reduced in most tissues, consistent with ATP7A playing a role in Cu efflux. The reduction in Cu was most pronounced in the hearts of older T22#2 females (24%), T22#2 males (18%), and T25#5 females (23%), as well as in the brains of 60-day-old T22#2 females and males (23% and 30%, respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trace element zinc is essential for the survival and function of all cells. Zinc deficiency, whether nutritional or genetic, is fatal if left untreated. The effects of zinc deficiency are particularly obvious in the skin, seen as an erythematous rash, scaly plaques, and ulcers. Electron microscopy reveals degenerative changes within keratinocytes. Despite the well-documented association between zinc deficiency and skin pathology, it is not clear which cellular processes are most sensitive to zinc deficiency and could account for the typical pathological features. We used the cultured HaCaT keratinocyte line to obtain insight into the cellular effects of zinc deficiency, as these cells show many characteristics of normal skin keratinocytes. Zinc deficiency was induced by growing cells in the presence of the zinc chelator, TPEN, or by growth in zinc-deficient medium. Growth of cells in zinc-deficient medium resulted in a 44% reduction of intracellular zinc levels and a 75% reduction in the activity of the zinc-dependent enzyme, 5'-nucleotidase, relative to the control cells. Over a period of 7 days of exposure to zinc-deficient conditions, no changes in cell viability and growth, or in the cytoskeletal and cell adhesion systems, were found in HaCaT cells. At 7 days, however, induction of apoptosis was indicated by the presence of DNA fragmentation and expression of active caspase-3 in cells. These results demonstrate that apoptosis is the earliest detectable cellular change induced by zinc deficiency in HaCaT keratinocytes. Our observations account for many of the features of zinc deficiency, including the presence of degenerate nuclei, chromatin aggregates and abnormal organization of keratin, that may represent the later stages of apoptosis. In summary, a major causal role for apoptosis in the pathology of zinc deficiency in the skin is proposed. This role is consistent with the previously unexplained diverse range of degenerative cellular changes seen at the ultrastructural level in zinc-deficient keratinocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous study investigating individuals' bitterness sensitivities found a close association among three compounds: L-tryptophan (L-trp), L-phenylalanine (L-phe) and urea (Delwiche et al., 2001, Percept. Psychophys. 63, 761-776). In the present experiment, psychophysical cross-adaptation and bitterness inhibition experiments were performed on these three compounds to determine whether the bitterness could be differentially affected by either technique. If the two experimental approaches failed to differentiate L-trp, L-phe and urea's bitterness, then we may infer they share peripheral physiological mechanisms involved in bitter taste. All compounds were intensity matched in each of 13 subjects, so the judgments of adaptation or bitterness inhibition would be based on equal initial magnitudes and, therefore, directly comparable. In the first experiment, cross-adaptation of bitterness between the amino acids was high (>80%) and reciprocal. Urea and quinine-HCl (control) did not cross-adapt with the amino acids symmetrically. In a second experiment, the sodium salts, NaCl and Na gluconate, did not differentially inhibit the bitterness of L-trp, L-phe and urea, but the control compound, MgSO4, was differentially affected. The bitter inhibition experiment supports the hypothesis that L-trp, L-phe and urea share peripheral bitter taste mechanisms, while the adaptation experiment revealed subtle differences between urea and the amino acids indicating that urea and the amino acids activate only partially overlapping bitter taste mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular effects of biodiesel emissions particulate matter (BDEP) and petroleum diesel emissions particulate matter (PDEP) were compared using a human airway cell line, A549. At concentrations of 25 µg/ml, diesel particulate matter induced the formation of multinucleate cells. In cells treated with a mixture of 80% PDEP:20% BDEP, 52% of cells were multinucleate cells compared with only 16% of cells treated with 20% PDEP:80% BDEP with a background multinucleate rate of 7%. These results demonstrate a causal relation between the formation of multinucleate cells and exposure to exhaust particulate matter, in particular diesel exhaust. Exposure of A549 cells to PDEP induced apoptosis, seen by active caspase-3 expression and the presence of cleaved pancytokeratin. PDEP exhaust was a much stronger inducer of cellular death through apoptosis than BDEP. There was an eightfold increase in the expression of SLC30A3 (zinc transporter-3 or ZnT3) in cells exposed to 80% PDEP:20% BDEP compared to untreated cells. The increase in ZnT3 expression seen in apoptotic cells following PDEP suggests a role for this zinc transporter in the apoptotic pathway, possibly through controlling zinc fluxes. As exposure to diesel exhaust particles is associated with asthma and apoptosis in airway cells, diesel exhaust particles may directly contribute to asthma by inducing epithelial cell death through apoptotic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenoprotein S (SEPS1) is a novel endoplasmic reticulum (ER) resident protein and it is known to play an important role in production of inflammatory cytokines. Here, we show evidence that SEPS1 is stimulated by pharmacological ER stress agents in RAW264.7 macrophages as well as other cell types. Overexpression studies reveal a protective action of SEPS1 in macrophages against ER stress-induced cytotoxicity and apoptosis, resulting in promoting cell survival during ER stress. The protective action of SEPS1 is largely dependent on ER stress-mediated cell death signal with less effect on non-ER stress component cell death signals. Conversely, suppression of SEPS1 in macrophages results in sensitization of cells to ER stress-induced cell death. These findings suggest that SEPS1 could be a new ER stress-dependent survival factor that protects macrophage against ER stress-induced cellular dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1β, IL-2, IL-6), interferon (IFN-γ) and tumor necrosis factor-α (TNF-α) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oral SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1β, IL-2, IL-6, IFN-γ and TNF-α and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1β, IFN-γ and TNF-α was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5–11. In particular, combination of SJW significantly inhibited the expression of TNF-α mRNA in the intestine over days 5–11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotenone is an inhibitor of mitochondrial complex I that produces a model of Parkinson's disease (PD), where neurons undergo apoptosis by caspase-dependent and/or caspase-independent pathways. Inhibition of calpains has recently been shown to attenuate neuronal apoptosis. This study aims to establish for the first time, the time-point of calpain activation with respect to the caspase activation and the possibility of cell cycle re-entry in rotenone-mediated cell death. Immunoblot results revealed calpain activation occurred at 5, 10 h prior to caspase-3 activation (at 15 h), suggesting calpain activation was an earlier cellular event compared to caspase activation in the rotenone-mediated apoptosis. In addition, an upregulation of phospho-p53 was observed at 21 h. However, no expression or upregulation of cell cycle regulatory proteins including cdc25a, cyclin-D1 and cyclin-D3 were observed, strongly suggesting that cell cycle re-entry did not occur. These findings provide new insights into the differential patterns of calpain and caspase activation that result from rotenone poisoning and which may be relevant to the therapeutic management of PD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies have suggested that cholesterol imbalance in the brain might be related to the development of neurological disorders such as Alzheimer's disease and Niemann–Pick disease type C. Previously, we have reported that U18666A, a cholesterol transport-inhibiting agent, leads to apoptosis and intracellular cholesterol accumulation in primary cortical neurons. In this study, we examined the effects of U18666A-mediated neuronal apoptosis, and found that chronic exposure to U18666A led to the activation of caspases and calpains and hyperphosphorylation of tau. Tau hyperphosphorylation is regulated by several kinases that phosphorylate specific sites of tau in vitro. Surprisingly, the kinase activity of cyclin-dependent kinase 5 decreased in U18666A-treated cortical neurons whereas its protein level remained unchanged. The amount of glycogen synthase kinase 3 and mitogen-activated protein kinases were found to decrease in their phosphorylated states by Western blot analysis. Gene transcription was further studied using microarray analysis. Genes encoding for kinases and phosphatases were differentially expressed with most up-regulated and some down-regulated in expression upon U18666A treatment. The activation of cysteine proteases and cholesterol accumulation with tauopathies may provide clues to the cellular mechanism of the inhibition of cholesterol transport-mediated cell death in neurodegenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diving animals offer a unique opportunity to study the importance of physiological constraint and the limitation it can impose on animal's behaviour in nature. This paper examines the interaction between physiology and behaviour and its impact on the diving capability of five eared seal species (Family Otariidae; three sea lions and two fur seals). An important physiological component of diving marine mammals is the aerobic dive limit (ADL). The ADL of these five seal species was estimated from measurements of their total body oxygen stores, coupled with estimates of their metabolic rate while diving. The tendency of each species to exceed its calculated ADL was compared relative to its diving behaviour. Overall, our analyses reveal that seals which forage benthically (i.e. on the sea floor) have a greater tendency to approach or exceed their ADL compared to seals that forage epipelagically (i.e. near the sea surface). Furthermore, the marked differences in foraging behaviour and physiology appear to be coupled with a species demography. For example, benthic foraging species have smaller populations and lower growth rates compared to seal species that forage epipelagically. These patterns are relevant to the conservation and management of diving vertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The role of apoptosis, or programmed cell death, has only recently been explored in tendon.

Objective: To investigate the development of apoptosis after high strain loading of rat tendon.

Methods: The right tibialis anterior tendons of three rats were prepared for mechanical loading, and left tendons were prepared identically as non-loaded controls. Tendon was loaded with 20% strain for six hours using a 1 Hz longitudinal sine wave signal. The following were used to assess apoptosis: (a) a monoclonal mouse antibody (F7-26) to label single stranded DNA breaks; (b) a rabbit polyclonal antibody that specifically recognises the cleaved form of caspase-3.

Results: Light microscopy confirmed that the high strain protocol induced a stretch overload injury. Control tendons showed little or no staining with the F7-26 antibody, but the loaded tendons displayed numerous apoptotic cells. The percentage of apoptotic cells (20%) in the loaded tendon was significantly greater than in the control tendon (1%) (p = 0.000). The labelled cells colocalised with abnormal nuclear morphology, including nuclear fragmentation. The staining against cleaved caspase-3 was positive in loaded tendons only, and localised both to nucleus and cytoplasm.

Conclusion:
This experiment extends knowledge of human tendon apoptosis by showing that apoptosis can occur in response to short term, high strain mechanical loading. This is the first report of mechanical loading of intact tendon causing excessive apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few studies to date have examined age-related changes in markers of immune status in healthy older individuals. The immune status of 93 healthy individuals aged 55–70 years was assessed by two- and three-color flow cytometry and biochemical analysis. There were significant age effects (p ≤.05) on monocyte phagocytic activity and cluster of differentiation (CD) 3/human leukocyte antigen-D-related (HLA-DR) late-activated T lymphocytes (% expression). There was a significant (p ≤ 0.1) Age x Sex interaction in absolute counts (x 109/L) of CD3/CD8 total cytotoxic T lymphocytes (CTL), the CD4 T- helper to CD8 CTL ratio, the CD3/CD4/CD45RA naïve T helper to CD3/CD4/CD45RO memory T helper lymphocyte ratio, and interleukin (IL)-1ß (% expression) by activated monocytes. The study shows that alterations in markers of immune status occur between 55 and 70 years, and provides reference values for the lymphocyte measures in healthy men and postmenopausal women in this age group. The study further highlights the need for sex-specific reference ranges for such markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gene for Rhotekin 2 (RTKN2) was originally identified in a promyelocytic cell line resistant to oxysterol-induced apoptosis. It is differentially expressed in freshly isolated CD4+ T-cells compared with other hematopoietic cells and is down-regulated following activation of the T-cell receptor. However, very little is known about the function of RTKN2 other than its homology to Rho-GTPase effector, rhotekin, and the possibility that they may have similar roles. Here we show that stable expression of RTKN2 in HEK cells enhanced survival in response to intrinsic apoptotic agents; 25-hydroxy cholesterol and camptothecin, but not the extrinsic agent, TNFα. Inhibitors of NF-KappaB, but not MAPK, reversed the resistance and mitochondrial pro-apoptotic genes, Bax and Bim, were down regulated. In these cells, there was no evidence of RTKN2 binding to the GTPases, RhoA or Rac2. Consistent with the role of RTKN2 in HEK over-expressing cells, suppression of RTKN2 in primary human CD4+ T-cells reduced viability and increased sensitivity to 25-OHC. The expression of the pro-apoptotic genes, Bax and Bim were increased while BCL-2 was decreased. In both cell models RTKN2 played a role in the process of intrinsic apoptosis and this was dependent on either NF-KappaB signaling or expression of downstream BCL-2 genes. As RTKN2 is a highly expressed in CD4+ T-cells it may play a role as a key signaling switch for regulation of genes involved in T-cell survival.